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Abstract—Reliable predictions are essential for managing 

software projects with respect to cost and quality. Several 

studies have shown that hybrid prediction models combining 

causal models with Monte Carlo simulation are especially 

successful in addressing the needs and constraints of today’s 

software industry: They deal with limited measurement data 

and, additionally, make use of expert knowledge. Moreover, 

instead of providing merely point estimates, they support the 

handling of estimation uncertainty, e.g., estimating the 

probability of falling below or exceeding a specific threshold. 

Although existing methods do well in terms of handling 

uncertainty of information, we can show that they leave 

uncertainty coming from imperfect modeling largely 

unaddressed. One of the consequences is that they probably 

provide over-confident uncertainty estimates. This paper 

presents a possible solution by integrating bootstrapping into 

the existing methods. In order to evaluate whether this solution 

does not only theoretically improve the estimates but also has a 

practical impact on the quality of the results, we evaluated the 

solution in an empirical study using data from more than sixty 

projects and six estimation models from different domains and 

application areas. The results indicate that the uncertainty 

estimates of currently used models are not realistic and can be 

significantly improved by the proposed solution. 

Keywords-effort estimation; defect prediction; empirical 

study; Monte Carlo simulation; CoBRA; HyDEEP 

 

I.  INTRODUCTION 

Successful software development requires effective tools 
for managing the quality and cost of software. Software 
prediction is an essential element of key management 
activities such as planning, monitoring, and controlling of a 
project’s performance in terms of product quality and cost. 
Ideally, credible predictions should be based on quantitative 
data. In practice, however, software organizations rather 
rarely possess sufficient amounts of reliable measurement 
data to base estimates on. Moreover, much of the 
organizational knowledge is typically represented by the 
subjective expertise of human experts.  

In this context, using estimation methods that make use 
of both measurement data and expert judgment seems to be 
natural. Surprisingly, only a few such hybrid estimation 
methods have been proposed so far.  

An essential aspect of software estimation is the explicit 
addressing of estimation uncertainty. Uncertainty is an 
inherent element of estimation and has many sources. On the 
one hand, predictions are based on imperfect (e.g., 
ambiguous and incomplete) information and use imperfect 
estimation models. On the other hand, unlike in traditional 
manufacturing, the environment of software development is 
rarely repeatable and tends to change – often in an 
unexpected way. An appropriate estimation method should 
handle uncertainty in that it explicitly considers various 
sources of uncertainty and supports decision makers in 
assessing corresponding project risks.  

Handling uncertainty is particularly important for hybrid 
estimation methods where quantitative measurement data are 
scarce, expert judgments are vague, and estimation models 
need to combine these two sources of information in a 
comprehensible way. Existing hybrid estimation methods 
model uncertainty of information using probability 
distributions that are synthesized either by means of 
Bayesian Theorem (e.g., [11][26][22][10]) or Monte Carlo 
simulation (e.g., [4][30][19]). Yet, they leave the issue of the 
imperfect character of estimating models largely 
unaddressed. In this paper, we focus on two simulation-
based hybrid estimation methods, CoBRA [4] and HyDEEP 
[18],  which estimate project effort and defects, respectively. 
Both methods are based on the same principles – they 
combine causal models, probability theory, and Monte Carlo 
simulation (CMMC) – and have shown to be successfully 
applied in a number of different software development 
contexts (e.g., [4][25][27][29][18][19]).  

Yet, CoBRA and HyDEEP also share a common open 
issue, which is to explicitly address the estimation 
uncertainty related to the imperfect character of the 
estimation model. In order to address this issue, we propose 
extending these methods by employing bootstrapping, a 
resampling technique [8]. We validate the effect of the 
extension on the predictive performance of both estimation 
methods using several real-world industrial cases. We check 
if employing bootstrapping results in more realistic estimates 
of estimation uncertainty, i.e., whether the probability 
distributions obtained as prediction output describe the actual 
level of uncertainty in the estimates more accurately.  

Using the Goal-Question-Metric paradigm [3], we can 
recapitulate the objective of our research as follows: 
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Object: Analyze the CoBRA and HyDEEP hybrid 
prediction methods – the classic (original) methods and 
their extensions using bootstrapping 
Purpose: for the purpose of comparative evaluation 
Focus: with respect to predictive performance in terms 
of accuracy of uncertainty assessments 
Viewpoint: from the perspective of software project 
decision makers 
Context: in the context of six prediction models 
representing different application domains, companies, 
and cultures. 
 

The remainder of the article is organized as follows: 
Section II explains the concept of existing hybrid CMMC-
based estimation approaches and defines the problem 
addressed in this paper. Section III presents the extension of 
the estimation approaches followed by a brief overview of 
related work in Section IV. Section V provides the empirical 
evaluation. Finally, Section VI concludes the study and 
sketches future work directions. 

 

II. BACKGROUND AND PROBLEM DEFINITION 

A. Principles of CMMC-based Estimation 

In this paper, we focus on two hybrid CMMC-based 
estimation methods: the CoBRA method for estimating 
software development effort [4] and the HyDEEP method for 
estimating software defects [19]. Both methods implement 
the same basic concept, although historically, the CoBRA 
method was developed first and then the HyDEEP method 
adapted its principles for software quality management. 

CoBRA and HyDEEP are based on the idea (1) that the 
actual value of a certain project characteristic (PAct) – in this 
case project effort or introduced/removed defects – can be 
decomposed into a context-specific base value (PBase) and a 
project-specific adjustment coefficient (A).  

PAct = PBase × A (1) 

PBase represents the value of the characteristic in a project 
that runs under optimal conditions – a so-called nominal 
project. Adjustment A represents the difference in the 
observed value of the characteristic in a particular, real 
project and the value for the nominal project. Adjustment A 
is measured in terms of relative percentage of PBase (2). For 
example, in the CoBRA method, PBase represents nominal 
project effort and the adjustment coefficient A represents the 
percentage of additional effort needed to overcome the non-
optimal characteristics of a real project, such as project-
specific time pressure, requirements volatility, etc. 

PAct = PBase * ( 1 + A ) (2) 

The adjustment coefficient A is modeled through a 
simple causal model (Fig. 1). The causal model consists of 
so-called influencing factors, which represent project 
characteristics that affect P within the considered context. 
The causal model is developed using expert knowledge (e.g., 
by involving experienced project managers). Domain experts 
first decide which factors have the most influence on P and 
thus should be considered in the model. Next, the experts 

quantify the impact of each individual factor in the worst 
case (i.e., when the factor has its worst, yet still realistic, 
outcome). In order to address the uncertainty of human 
judgment, each expert quantifies the factor’s impact using a 
triangular distribution. This means that the expert provides 
three values for each factor: the minimal, maximal, and most 
likely percentage of the impact. 

 
Figure 1.  A simple causal model is used to determine adjustment 

In order to determine the probability distribution 
describing the overall adjustment for a concrete project, 
Monte Carlo simulation is applied. It is used to combine the 
probability distributions provided by the experts for the 
different influencing factors in the model and adjusts their 
impact based on the given characteristics (i.e., factor levels) 
of the estimated project. More details on the algorithms are 
published in [4] and [20]. 

In order to predict the actual value of the project 
characteristic PAct, the project-specific adjustment as well as 
the context-specific base value have to be known (2). This 
later value is computed using information about n already 
completed – historical – projects from the same context. For 
each historical project, the project-specific Adjustment Ai is 
computed using the quantified casual model and the factors’ 
actual levels in the project. Based on the actual value of the 
project characteristic PAct(i) of the i-th already completed 
project, the base value can be computed (3). 

      
      

         (3) 

For a perfect causal model, we would assume that after 
we “extract” the impact of all factors influencing the 
characteristic of interest through the adjustment coefficient, 
the PBase(i) value should be constant across all n historical 
projects. However, in practice, due to its imperfection, the 
causal model does not account for all influences on the 
considered project phenomenon. In consequence, the PBase 
values computed for multiple historical projects typically 
vary to some extent. Therefore, for the purpose of prediction, 
the median is taken as a robust estimator for the “real” base 
value (4). 

 ̂                  
             (4) 

B. Deficit of CMMC-based Estimation 

Taking the median as a point estimator over the multiple 
base values computed across the already completed projects 
has a drawback. By taking a point value, we lose information 
about the estimation uncertainty caused by the imperfection 
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of the estimation model. This may result in a probability 
distribution for the predicted project characteristic that is too 
narrow and, consequently, in overconfidence in the provided 
estimate.  

III. IMPROVING CMMC-BASED PREDICTIONS 

In this section, we explain the approach used to adjust the 
investigated methods for CMMC-based estimations in order 
to address their deficits regarding uncertainty estimates. 

A. Solution Idea 

 In order to address the uncertainty caused by model 
imperfection within CMMC-based estimations, we propose 
employing bootstrapping for determining the Base value 
upon which project-specific estimates are founded. 
Specifically, we apply Bootstrap sampling upon the Base 
values computed for multiple already completed projects and 
use the bootstrapped distribution as the Base when 
estimating the new project. Since the shape of the 
distribution of Base is unknown, we use a non-parametric 
Bootstrap method. Fig. 2 illustrates the current approach and 
the proposed improvement. 

 
Figure 2.  Extending hybrid estimation through Bootstrapping. 

B. Foundations of Bootstrapping 

In general, Bootstrapping belongs to the resampling 
methods and can be used for obtaining probability 
distributions for an estimator of a population parameter (such 
as mean, median, variance, etc.). In our study, we employ the 
original non-parametric Bootstrap method [8], which unlike 
parametric methods, does not rely on assumptions about the 
distribution of the estimator. Instead, non-parametric 
Bootstrap is based on the empirical distribution of data and 
relies on the assumption that the sample’s distribution is a 
good estimate of the population’s distribution.  

Bootstrap treats the sample (i.e., the observed data set) of 
size n as the population from which it randomly draws, with 
replacement, a number of new samples of size n. In 
consequence, each “resample” could include some of the 
original data points more than once while it might not 
include others at all. Because the resamples will usually 
differ from the original sample, the estimator  ̂   of the 
distribution parameter γ calculated based on the i-th resample 
will also vary for i = 1,…,n. The relative frequency of the  ̂   
values across n bootstrapped samples is then an estimate for 

the distribution of  ̂, which can be used to make inferences 
about the parameter γ. 

C. Integrating Bootstrapping into CMMC-based Prediction 

We integrate bootstrapping into the CMMC-based 
estimation methods in that instead of taking the median over 
the original sample of Base values computed across multiple 
already completed projects, we take the probability 
distribution for the median. For this purpose, we adapt the 
bootstrap procedure that is proposed in [9]: 

 

1. Construct an empirical probability distribution from the 
set of PBase values computed for n already completed 
projects by placing a probability of 1/n at each value 
PBase1, PBase2, …, PBasen of the sample. Each sample’s 
element has thus the same probability of being drawn. 

2. Take a random sample of size n with replacement from 
the empirical distribution of PBase. 

3. Compute the median Med (PBase) for the random sample. 
4. Resample m times and compute the median Medi(PBase) 

for each i-th sample (i = 1, …, m), 
5. Construct a relative frequency histogram from the m 

Medi(PBase) values by placing a probability of 1/m at 
each value Med1(PBase), Med2(PBase), …, Medm(PBase). 
The distribution obtained is the bootstrapped estimate of 
the distribution of Med(PBase). This distribution can now 
be used to make inferences about the parameter PBase for 
the purpose of estimating PAct (see Fig. 2 and (2)). 

 

IV. RELATED WORK 

A. Handling Uncertainty in Hybrid Estimation Methods 

In their discussion about estimation approaches [12] 
Jørgensen and Boehm arrived at the conclusion that “Making 
a one-size-fits-all decision on using models versus experts in 
all situations doesn’t appear to be a good idea.” The most 
important practical consequence of this finding is that 
combining data analysis and expert judgment in hybrid 
prediction methods would increase the applicability of 
systematic software estimation in industrial contexts, where 
measurement data are sparse and human judgment 
expensive. One key aspect to consider when combining these 
two estimation strategies is the handling of associated 
uncertainties. In the context of software estimation, several 
authors discuss detailed sources and causes of estimation 
uncertainty [15][13]. These may be generalized into two 
sources of uncertainty: 1. the imperfect character of 
estimation model (or method in case of non-model-based 
estimation approaches) and 2. the imperfect character of the 
information upon which estimates are based.  In the context 
of hybrid software estimation, typical approaches for 
handling uncertainty include the use of Monte Carlo 
simulation [4][19][30] and the Bayes’ Theorem  [10]. 

Monte Carlo simulation is typically used for combining 
multiple expert judgments delivered in the form of simple 
probability distributions. In order to account for their 
uncertainty, human experts are usually asked to provide three 
values: minimal, maximal, and most likely. These are then 
interpreted as parameters of triangular or Beta-PERT 
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probability distribution and processed using Monte Carlo 
simulation to deliver final estimates in the form of 
probability distributions. The deficit of Monte Carlo 
simulation is that it focuses on the uncertainty of estimation 
inputs while leaving unaddressed the uncertainty associated 
with the estimation model or method.  

Bayes’ Theorem is used in the context of software 
estimation to infer about probability of certain events based 
upon initial knowledge (beliefs) and actual observations.  In 
the approaches based upon Bayes’ Theorem, human experts 
define the structure of the estimation model and the prior 
joint probability distribution of the predicted characteristic. 
These probability distributions are then updated to posterior 
distributions by means of Bayesian inference using marginal 
distributions of project’s actual measurement data. Several 
studies use this approach in the context of regression models 
for updating regression coefficients [5][21]. Yet, the most 
prominent application of Bayes’ Theorem for prediction 
purposes is represented by Bayesian Belief Networks 
(BBNs), where the estimation model has the form of a 
structural causal model [11][26][22][24][31][10]. The use of 
Bayes’ Theorem in the context of software estimation is 
limited by several aspects. One aspect is that it focuses on 
addressing uncertainty of estimation inputs. Moreover, 
unlike Monte Carlo simulation, approaches based on Bayes’ 
Theorem do not explicitly handle the aspect of multiple, 
potentially inconsistent, uncertain estimation inputs (e.g., 
judgments of multiple human experts). Another aspect, 
specific for BBNs, is that in practice, they are limited to 
discrete data. Currently, implementing BBNs for continuous 
or mixed data requires applying sophisticated theories. 

Summarizing, existing hybrid estimation approaches 
focus on one aspect of estimation uncertainty, namely the 
uncertainty of estimation inputs, while leaving the 
uncertainty caused by the estimation model or method 
largely unaddressed. 

B. Bootstrapping 

To the best of our knowledge bootstrapping has not be 
employed so far in the context of hybrid software estimation. 
It has been employed in the context of data-driven software 
estimation based upon sparse information for approximating 
prediction confidence. For example, Angelis and Stamelos 
[1] used bootstrapping for determining prediction intervals in 
the context of analogy-based estimation. They compared 
prediction intervals based on bootstrapping and regression 
for the prediction of most likely project effort. The authors 
reported that both approaches were able to provide unbiased 
prediction intervals, where about 95 percent of the actual 
effort values were included in the 95 percent confidence 
prediction intervals. However, Jørgensen [13] questioned 
these results by claiming the model-based effort prediction 
intervals presented by Angelis and Stamelos were 
unrealistically wide. According to Jørgensen “much of the 
interval width may be a result of inaccurate models of most 
likely effort and lack of integration of important uncertainty 
information i.e., most of the uncertainty is ‘model 
uncertainty’ (poor integration of knowledge) and not 
‘project uncertainty’ (inherent uncertainty).” Angelis and 

Mittas [23] addressed the comment of Jørgensen and 
continued in [1] their work on constructing prediction 
intervals using bootstrapping in the context of an effort 
prediction method that combines least-square regression and 
estimation by analogy. 

V. EMPIRICAL STUDY 

This section describes the empirical study we conducted 
to address the stated research objective. First, we concretize 
our objective and discuss how to measure whether a given 
probability distribution describes the actual level of 
uncertainty in a realistic way. Based on this, we define our 
hypothesis and the corresponding study design. Then, we 
discuss the context, the population, and our sample, e.g., the 
prediction models and projects we used in this study. Finally, 
we present the study results and test our hypothesis, discuss 
threats to the study’s validity, and interpret the results in the 
context of existing work. 

A. Study Goals 

In our study, we focused on the following three research 
questions (RQ1 to RQ3), which we attempted to answer: 

 

RQ1. Are the uncertainty estimates provided by the 
investigated classic CMMC-based methods  
accurate (i.e., realistic)?  

RQ2. Are the uncertainty estimates provided by the 
methods when extended by bootstrapping more 
accurate (i.e., realistic)?  

RQ3. Do specific characteristics of the investigated 
prediction models have an impact on the accuracy 
(i.e., realism) of the provided uncertainty estimates? 

 

B. Evaluation Measures 

In this section, we present, critically discuss, and finally 
select the measures used in our study to characterize the 
realism/accuracy of uncertainty estimates. Beforehand, we 
briefly introduce accuracy measures for point estimates, 
since we apply them to characterize the estimation models 
and projects used in our study. 

For the evaluation of point estimates on ratio scales, a set 
of most commonly used standard measures [6] can be 
identified in the software engineering literature, even if they 
are partially being criticized [16]. This is not the case for the 
assessment of uncertainty estimates, which are typically 
provided in one of two forms, prediction intervals or 
probability distributions. Moreover, since current work 
focuses mainly on the evaluation of prediction intervals, we 
generalize some existing measures to make better use of the 
information provided by probability distributions. 

Point estimates (PEs) provide one value that should 
represent the “most likely” or “expected” actual outcome of 
the estimated characteristic. The accuracy of point estimates 
is typically measured by the magnitude of relative error 
(MRE) where MRE = |actual value – estimated value| 
/actual value. The corresponding aggregation statistic most 
commonly used to describe the accuracy of the applied 
prediction model or approach is the mean magnitude of 
relative error (MMRE), which is the average over all MRE 
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values for a given set of point estimates [6]. Consequently, a 
smaller MMRE values means an estimation model or method 
provides more accurate point estimates. A second 
aggregation statistic commonly used for point estimates is 
prediction at level 25 Pred(.25), which delivers the relative 
number of estimates with an MRE less than or equal to 0.25 
[6]. 

Prediction intervals (PIs) are used to characterize the 
uncertainty in estimates. They comprise a minimum and 
maximum value and should be associated with a confidence 
level (CL) for which they are provided [2]. An example of a 
PI is “the outcome of the estimated characteristic is between 
min and max with a probability of 80%,” where min and max 
are the lower and upper bounds of the PI and 80% is the 
confidence level (Fig. 3, upper left diagram). PIs should not 
be confused with the concept of confidence intervals, which 
are provided for an aggregation statistic of a population and 
not for a specific estimate. 

 

 

 
Figure 3.  Prediction interval (PI), tertiles (T), quartiles (Q), quintiles (QU) 

The most commonly used PI confidence level in software 
estimation studies is 0.90 (short CL0.9). However, in line with 
Jørgensen [13], we argue for the use of PIs with a lower 
confidence level. In our study, we determine PIs with CL0.8 
and CL0.5 due to the following reasons: (1) It is difficult for 
experts and models based on limited data to provide accurate 
PIs with a high CL, such as CL0.9 or CL0.95, since this would 
require considering very rare events in the estimate [14]. (2) 
PIs with high CL are typically too wide to be of practical use 
[1]. (3) A CL0.8 is sufficient in most practical settings as only 
one of ten projects will exceed the upper bound of the PI and 
only one will go below the lower bound. (4) We consider 
additional PIs with CL0.5, which provide an estimate for the 
“typical” range, which is not exceeded by half of the 
projects. Moreover, they can be used to calculate the inter-
quartile fraction, which will be introduced later in this 
section. 

The hit rate (HitR) is the measure for evaluating PIs most 
commonly used [23][13][17]). The underlying idea: If PIs 
with a confidence level of x% are provided for several (n) 
estimates, we would assume that an average of x% of actual 
outcomes will fall inside the lower and upper bounds of their 
PI. We can calculate the hit rate by counting the number of 
actual outcomes hitting their PI and dividing them by n. If 
the PIs are realistic with respect to the uncertainty they 
describe, we should obtain a hit rate around the chosen 
confidence level. If the observed hit rate is higher, the PI 

estimates are too wide; if the hit rate is lower, the PI 
estimates are too narrow (i.e., overconfident).  

When applying the hit rate measure, one should consider 
that its accuracy depends on the number of estimates used to 
calculate it. This means that we would need a kind of 
confidence interval (≠confidence level) and statistical tests to 
reasonably interpret and judge the significance of the 
observed hit rate. However, to the best of our knowledge, 
previous studies using this measure did not perform such an 
analysis. We suggest applying resampling in order to obtain 
a 90% confidence interval for the calculated hit rate and 
performing a binomial test to check whether the difference 
between the expected and the obtained hit rate is significant 
(see hypotheses section).  

Relative PI width (rWidth) is another measure proposed 
in [14] to evaluate PIs. It is calculated as the range of the PI 
(i.e., distance between the lower and upper boundaries) 
normalized by the estimate for the most likely outcome (i.e., 
the point estimate). Jørgensen et al. [14] argue that when 
comparing estimators with the same or a similar hit rate, the 
estimators that provide a lower relative width should be 
preferred. However, it should be mentioned that (1) the 
relative width expresses the precision of the PI but not 
whether the PI expresses the actual level of uncertainty in the 
estimates. (2) There is a relationship between precision (i.e., 
relative width) and hit rate: When the precision of an 
estimator with a given accuracy (i.e., measurement error) is 
increased, the hit rate is reduced and vice versa. (3) Since the 
optimal relative width depends on the estimation situation’s 
intrinsic uncertainty, no clear target value can be provided 
(in contrast to the hit rate, which should be equal to the PI 
confidence level). Therefore, we consider the relative width 
as an appropriate measure for describing the precision of PIs 
and judging their applicability in practices but not for 
evaluating the realism/accuracy of uncertainty estimates 
provided by PIs, which is what we are mainly interested in. 

The width-accuracy correlation proposed in [14] 
considers the correlation between the accuracy of the point 
estimate (e.g., measure by MRE) and the rWidth of the PI. 
The assumption is that estimates with a high accuracy should 
be also more precise (i.e., are provided with a narrower PI). 

The adjusted hit rate score is a measure proposed by 
Mittas and Angelis [23] to compare the quality of two PIs by 
considering (1) their overlapping, (2) their range, and (3) 
whether they include the actual outcome. Based on a 
complex definition considering different cases, the measure 
tries to provide a one-number indicator for comparing the 
quality of prediction intervals. Due to the integration of 
concepts related to hit rate as well as PI precision, the 
estimator is difficult to interpret with respect to the 
realism/accuracy of the uncertainty estimates and is not 
considered in our study. 

 

 Probability distributions (PDs) describe for each 
possible outcome the estimated probability of this outcome. 
This means PDs are more powerful with respect to the extent 
of information they provide. Based on a given PD, the 
corresponding min and max values of a PI can be determined 
for any CL value. Moreover, the probability (p) that an 
outcome is inside a given interval can be calculated. In 
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return, this means that the measures that are applicable for 
PIs can also be applied for PDs. However, they do not use 
the full information provided by a PD and consequently only 
evaluate selected aspects of it. 

The Inter-quartile fraction (IQF) is a measure proposed 
by Connolly and Dean [7] to assess estimates provided as 
probability distributions. It is similar to the hit rate measure 
for PIs in the way that it considers the portion of actual 
outcomes falling within a certain interval. In the case of the 
IQF, this interval is the inter-quartile range of the estimated 
probability distribution. Since the inter-quartile range is 
defined as the area between the first quartile (q1) and the 
third quantile (q3), it comprises 50% of the probability 
distribution and we would expect that 50% of all actual 
outcomes fall within this interval. An IQF<0.5 therefore 
indicates a too narrow body of the distribution, where an 
IQF>0.5 indicates a too wide body. Please note that based on 
its definition, the IQF is equivalent to the hit rate measure for 
PIs with CL0.5. 

Quantile-based fractions (Ti, Qi, QUi) generalize the 
inter-quartile fraction measure. They consider not whether 
the actual outcome is inside or outside the inter-quartile 
interval but how often the actual outcomes fall within each of 
the intervals defined by two neighboring quantiles. For 
instance, the quartiles q1 to q3 divide the PD into four parts 
(Q1 to Q4) each covering 25% of the probability (see Fig. 3, 
lower left diagram). The underlying idea is similar to the one 
of the hit rate: If PDs are provided for several estimates, we 
would assume that ¼ of the actual outcomes fall inside Q1 of 
their PD. Naturally, the same counts for Q2 to Q4. The 
advantage over the hit-rate measure is that not only over or 
under-confidence can be identified, but also other biases. For 
instance, such a bias may be that an estimation method tends 
to be too optimistic and strongly underestimate the actual 
outcome (i.e., too many outcomes fall within Q4) or slightly 
underestimate it (i.e., too many outcomes fall within Q2). 

We propose this generalization in order to get more 
information about the difference between estimated and 
actual distribution of outcomes. Since a high number of 
quantiles would reduce the number of actual outcomes 
expected for a certain quantile-based interval, we limit our 
investigation to tertiles (T), quartiles (Q), and quintiles 
(QU), see Fig. 3. We further suggest performing a chi-square 
goodness-of-fit test to check whether the distribution of the 
actual outcomes significantly differs from the expected equal 
distribution over the quantile-based intervals. 

C. Hypotheses 

Based on the stated research questions and measures for 
the concepts of interest, we formulate in this section 
quantitative hypotheses that we will check in our study. 

 

RQ1: Are the uncertainty estimates provided by the investigated 
classic CMMC-based methods accurate (i.e., realistic)? 

 

H1: The investigated classic CMMC-based methods are 
overconfident, i.e., they deliver unrealistic narrow 
probability distributions for the estimated outcome. We 
accept H1 if at least one of the two sub-hypotheses H1.1, H1.2 
is accepted. 

H1.1: The prediction intervals with CL0.8 determined using 
the probability distributions provided by the investigated 
classic CMMC-based approaches are too narrow. 
 

H1.1:  HitR(PIClassic,CL0.8) < 0.8, H0: HitR(PIClassic,CL0.8) ≥0.8 
 

H1.2: The prediction intervals with CL0.5 determined using 
the probability distributions provided by the investigated 
classic CMMC-based approaches are too narrow. 
 

H1.2:  HitR(PIClassic,CL0.5) < 0.5, H0: HitR(PIClassic,CL0.5) ≥0.5 
 

RQ2: Are the uncertainty estimates provided by the methods when 
extended by bootstrapping more accurate (i.e., realistic)? 

 

H2: The bootstrapped CMMC-based approaches are less 
overconfident, i.e., they deliver more realistic probability 
distributions for the estimated outcome than the classic 
approaches. We accept H2 if for our sample…  
 

HitR(PIClassic,CL0.8) < HitR(PIBoot,CL0.8) ≤ 0.8 and   
HitR(PIClassic,CL0.5) < HitR(PIBoot,CL0.5) ≤ 0.5 and     

   

at least one of the two sub-hypotheses H2.1, H2.2 is accepted. 
 

H2.1: The hit rate measured for prediction intervals with 
CL0.8 determined based on the bootstrapped approaches 
differs from the one based on the classic approaches.  

 

H2.1:  μ(Hits for PIClassic,CL0.8) ≠ μ(Hits for PIBoot,CL0.8) 
H0:  μ(Hits for PIClassic,CL0.8) = μ(Hits for PIBoot,CL0.8)    

 

H2.2: The hit rate measured for prediction intervals with 
CL0.5 determined based on the bootstrapped approaches 
differ from the one based on the classic approaches.  
 

H2.2:  μ(Hits for PIClassic,CL0.5) ≠ μ(Hits for PIBoot,CL0.5) 
H0:  μ(Hits for PIClassic,CL0.5) = μ(Hits for PIBoot,CL0.5)    

 

RQ3: Do specific characteristics of the investigated  
prediction models have an impact on the accuracy  

(i.e., realism) of the provided uncertainty estimates? 
 

Since RQ3 is explorative, we provide no hypotheses. 

D. Context and Sample 

The population we want to make a statement about are 
the predictions performed by hybrid CMMC-based 
prediction models. Each prediction is determined by two 
facts, the project for which the prediction is performed and 
the prediction model applied. 

Our sample of hybrid prediction models and project data 
is a convenience sample in the way that it is based on 
available data. However, to the best of our knowledge, this is 
a general issue in any software estimation study published. 
Our sample comprises 61 projects and 6 corresponding 
prediction models in total. The data is extracted from 
previous studies where CMMC-based models were 
developed in different companies. The models provide 
estimates for different properties and are spread over a broad 
range of domains (for details, see Table I). The data have 
been annonymized due to confidentiality reasons. Based on 
the authors experience with CMMC-based models, the 
model characteristics such as the number of factors and 
historical project data included as well as their point 
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estimation accuracy are representative of the population of 
CMMC-based models. 

 

TABLE I.  STUDY INPUT: EXISTING HYBRID PREDICITON MODELS 

Context Model Characteristics Accuracy 

Domain 
Estimated 

Quantity 

No. 

Projects 

Direct 

Factors 

Indirect 

Factors 
MMRE 

Pred 

(.25) 

Web Dev. 
New dev. 

effort 
12 9 0 0.19 0.67 

MIS 
New dev. 

effort 
16 15 6 0.13 0.88 

Medical 

systems 

Maintenance 

effort 
10 4 2 0.27 0.50 

Telecom- 

unication 
Defect content 8 5 0 0.30 0.75 

MIS 
Maintenance 

effort 
10 14 2 0.09 0.90 

Space 
Quality assur. 

effort 
5 4 0 0.18 0.80 

 

E. Study Design and Excecution 

This section briefly describes how we designed and 
executed our comparative study. 

In a first step, we developed and integrated the option to 
apply bootstrapping in the available tool support for CMMC-
based models and validated our implementation of the 
algorithm described in Section III.C with exemplary data.   

In a second step, we amassed all required input data to 
conduct the study. This included the information about the 
existing models used in our study (Table I) as well as the 
characteristics and actual values of the projects that were part 
of the historical data basis of these models.  

In a third step, we estimated for each project the 
probability distribution for its expected outcome applying the 
classic CMMC-based methods without bootstrapping. In 
order to do this, we used the jackknife approach (also known 
as leave-one-out analysis) to create for each project a 
prediction model based on other projects from the considered 
context and applied this model for the estimation. To 
illustrate this: In order to estimate a project i from the web 
domain, we used the remaining 11 projects from this context 
and, based on the existing data, built a model, which we 
applied to project i to obtain the probability distribution 
PDClassic,i for its expected outcome. This means that we 
finally obtained a set of 61 probability distributions 
(PDClassic,i with i=1…61) that represent the estimated 
outcomes for the 61 projects using the classic CMMC-based 
approaches. 

In a fourth step, we repeated what we did in the third 
step, but this time using the approaches that integrate 
bootstrapping. This means we obtained another set of 61 
probability distributions (PDBoot,i with i=1…61). 

In a fifth step, we calculated based on the measure 
definitions in Section V.B the data required for our analysis 
in the next section using the obtained probability 
distributions and the actual project outcome values.  

F. Study Results 

This section first provides a descriptive overview of the 
project-specific results. Next, the results for the classic and 

bootstrapped approaches including the corresponding test 
results for hypotheses H1 and H2 are presented and discussed. 
Finally, the results for different subsets of the data are 
presented and discussed. 

Descriptive statistics: The box-and-whisker plots in Fig. 
4 summarize the project-specific “row” results used to 
calculate the aggregation statistics and test our hypotheses.  

The distribution of the MRE values is asymmetric (as we 
expected based on observations in other published studies) 
and has some outliers caused by point estimates strongly 
overestimating the actual effort. We present the MRE values 
independent of the applied approaches, since bootstrapping 
mainly affects the observed probability distribution but not 
the point estimate. The relative width of the PIs for the lower 
confidence level (CL0.5) tends to be smaller than for the 
higher one (CL0.8). Moreover, the PIs generated by the 
bootstrapped approaches tend to be broader than the ones of 
the classic approaches. Most relative width series (apart from 
PIClassic,CL0.8) have a number of higher values, which are 
indicated in the diagram as outliers and therefore do not 
appear to be normally distributed.  

Prob(x>actual) represents the estimated probability for 
an outcome greater than the one actually measured for the 
project. It is the basis for calculating the hit rate (HitR) and 
the quantile-based fractions (Ti, Qi, QUi). For instance, we 
can determine the hit rate for PICL0.8 by counting all projects 
with a Prob(x>actual) value between 10 and 90 percent and 
dividing the number by the total number of projects.  

 

 
Figure 4.  Results for classic and bootstrapped approaches (n=61) 

RQ1 and RQ2: Hit rate (HitR): Table II presents the hit 
rates for the classic and bootstrapped approaches. The 
actually observed hit rates in our sample are in all cases 
lower than the expected ones (i.e., the respective PI 
confidence levels), with the gap being higher for the classic 
approaches than for the bootstrapped ones. However, one 
should note that the hit rates measured for our sample are 
only estimates for the population’s actual hit rate values. 
Therefore, we use resampling to provide a 90% confidence 
interval for the population’s hit rate. The confidence 
intervals indicate that the hit rate for the classic approaches 
are too low.  
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TABLE II.  COMPARING HIT RATES AND RELATIVE PI WIDTHS 

Approach Confidence 

level (CL) 

Hit rate CI.90 for 

HitRate 

Hit rate 

differs 
a
 

Median 

rWidth 

Classic 0.50 0.41 [0.31;0.52] p=0.200 0.18 

Bootstrapped 0.50 0.46 [0.36;0.57] p=0.609 0.22 

Classic 0.80 0.64 [0.54;0.74] p=0.003 0.34 

Bootstrapped 0.80   0.74
 b
 [0.66;0.84] p=0.146 0.41 

a. Binominal test with significance level = 0.05 (bold values are significant)  

b. Differs significant from the Classic approaches (Wilcoxon test, α = 0.05, p = 0.014) 

H1: We tested H1.1 and H1.2 using a binomial test with α = 
0.05. Based on the result we can reject the null hypothesis 
for H1.1 and conclude that the hit rate for the population is 
significantly (p=0.003) too low. This means that the 
uncertainty estimates provided by the classic approaches are 
overconfident and therefore not realistic. 

H2: We tested H2.1 and H2.2 using the non-parametric 
Wilcoxon signed rank test. Based on the results we can reject 
the null hypothesis for H2.1, meaning that the bootstrapped 
approaches significantly (p=0.014) improve the hit rate and 
therefore the realism of the uncertainty estimates. 

Discussion of relative PI width results: The median 
rWidth increases when applying the bootstrapped approaches 
(Table II). The reason is that bootstrapping cannot improve 
the accuracy of the point estimates provided by the 
estimation method but improves the accuracy of the 
uncertainty estimates by adjusting the width of the 
confidence intervals. When comparing the observed rWidth 
results with the results reported in [14] for expert-based 
estimation, they are in a comparable region. When 
comparing them with the rWidth results provided by purely 
data-based PIs as presented in [1][23], they are much lower, 
i.e., they are more practical. 

Discussion of width-accuracy correlation results: Based 
on our sample we could not observe any correlation between 
the accuracy of the point estimates measured by MRE and 
the relative width of the respective PIs. Therefore, we should 
not assume that estimates provided with a narrow prediction 
interval also provide more accurate point estimates. This 
observation is in line with the findings by Jørgensen et al. 
[14] for human-based cost estimation. 

Discussion of quantile-based fractions results: Fig. 5 
shows the results obtained for the quantile-based fractions 
measure. For the tertiles-based fractions, we observe that the 
bootstrapped approaches are very close to the expected 
distribution of the outcomes, whereas the classic approaches 
seem to have too many outcomes falling within T3, which 
may be an indicator that the classic methods tend to 
underestimate the project outcomes. Looking at the quartile-
based fractions, it seems that applying the classic approaches 
result in too many outcomes in Q1 and Q4, which may 
indicate that the classic methods favor overconfident 
estimates. For the bootstrapped approaches the picture is not 
that clear. Nevertheless, the high number of outcomes in Q4 
and the low number of outcomes in Q3 may indicate that the 
bootstrapped approaches underestimate the probability of 
“unusually high” project outcomes. The quintile-based 
fractions underline this picture. However, it should be 
mentioned that we performed a chi-square test for each set of 
quantile-based fractions and none of them showed a  

  

TABLE III.  TESTS RESULTS FOR QUANTILE-BASED FRACTIONS 

Approach Tertile-based 

fractions 

Quantile-based 

fractions 

Quintile-based 

fractions 

Classic p = 0.297 p = 0.069 p = 0.418 

Bootstrapped p = 0.923 p = 0.320 p = 0.574 

a. Chi-Square test for equal distribution with significance level = 0.05 (bold values are significant) 

  
Figure 5.  Quantile-based fractions, i.e., percentage of actual outcomes 

falling within a specific tertile (T), quartile (Q), and quintile (QU) interval 

 

statistically significant derivation from an equal distribution 
(Table III). Therefore, we should be very careful not to over-
interpret the results, even if the observed overconfidence of 
the classic approaches is confirmed by our previous hit rate 
based results. 

RQ3: In order to analyze whether certain characteristics 
of the estimation model may have an impact on the accuracy 
of the provided uncertainty estimates, we created subsets of 
the investigated projects. Each subset was defined based on 
one characteristic of the estimation model and analyzed with 
respect to the obtained hit rate and median rWidth (Table 
IV). Please note that the subsets intentionally overlap in part 
in order to obtain a reasonable number of projects in each 
subset. 

TABLE IV.  HIT RATES AND RELATIVE PI WIDTHS FOR SUBSETS 

Approach Criteria for 

 model selection 

Project 

number 

Confidence 

level (CL) 

Hit rate Median 

rWidth 

Classic direct factors < 7 23 0.80   0.48 
a
 0.32 

Classic direct factors ≥ 7 38 0.80   0.74 
a
 0.34 

Bootstr. direct factors < 7 23 0.80 0.61 0.58 

Bootstr. direct factors ≥ 7 38 0.80 0.82 0.40 

Classic MMRE < 0.20 43 0.80   0.72 
b
 0.35 

Classic MMRE ≥ 0.15 35 0.80   0.49 
b
 0.30 

Bootstr. MMRE < 0.20 43 0.80   0.84 
c
 0.41 

Bootstr. MMRE ≥ 0.15 35 0.80   0.63 
c
 0.40 

Classic projects ≤ 10 33 0.80 0.55 0.32 

Classic projects ≥ 10 48 0.80 0.69 0.34 

Bootstr. projects ≤ 10 33 0.80 0.67 0.41 

Bootstr. projects ≥ 10 48 0.80 0.77 0.41 

a. Hit rate of compared subsets differs significantly (Mann–Whitney U, α = 0.05, p=0.043) 

b. Hit rate of compared subsets differs significantly (Mann–Whitney U, α = 0.05, p=0.035)  

c. Hit rate of compared subsets differs significantly (Mann–Whitney U, α = 0.05, p=0.037) 
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Discussion hit rate results of the subset: The hit rates for 
the subset of models that contain a higher number of 
influencing factors are higher. This result is statistically 
significant for the classic approaches but can also be 
observed in its general tendency for the bootstrapped 
approaches. A possible explanation may be that the experts 
can better judge the uncertainty in their estimates when they 
can separate it during modeling in a larger set of independent 
influencing factors. The hit rate results for the subset of 
models with higher accuracy (i.e., lower MMRE value) are 
higher than for the subset of models providing less accurate 
point estimates. This result is statistically significant for both 
kinds of approaches, the classic and the bootstrapped ones. A 
possible explanation may be that the models with lower 
overall accuracy are typically also the models that comprise 
one or more projects with high divergence between their 
actual and their estimated outcome. These divergences 
typically are also an indicator for inaccurate uncertainty 
estimates and consequently a lower hit rate result. The 
observed hit rates for the set of models that comprise a 
higher number of projects are higher for both kinds of 
approaches. However, the level of increase is lower than for 
the other two separation criteria and we could not show any 
statistical significance of the observed increase. 

Discussion relative PI width results of the subset: The 
median PI width varies for the different subsets between 0.30 
and 0.58, with most results being between 0.32 and 0.41. 
There seems to be no general relation between the observed 
hit rate and the median relative PI width for the different data 
subsets. Interestingly, the bootstrapped approach provides 
the broadest PIs for the subset with the lowest hit rate. 

 

G. Threats to Validity 

The results of any empirical study have to be discussed 
with respect to their validity. In this section, threats to 
validity are presented that were identified during and after 
the conduction of this study and which are considered to be 
relevant. In order not to overlook any major threat, we used a 
checklist of typical threats [28]: 

Statistical Conclusion Validity: With respect to the 
validity of inferences about the correlation (covariation) 
between study treatments and observed effects we identified 
as the major threat the low statistical power. Since we could 
analyze the impact of bootstrapping only on 6 project data 
sets with 61 data points, not all of our observations could be 
underlined with statistically significant test results. 

Internal Validity: With respect to the validity of 
inferences regarding whether observed covariations reflect 
causal relationships between treatments and effects, we 
identified the threat of selection. Specific characteristics of 
projects used in the validation study may confound the 
effects observed. Our main selection criteria were the 
availability of the required model and project data and 
confidence in the data source. All data were extracted from 
high quality primary studies conducted in companies. 

Construct Validity: With respect to the validity of 
inferences regarding the higher-order constructs investigated 
in the study, we see the threat of mono-operation bias. The 
measures used to quantify the accuracy of estimated 

uncertainty might not be adequate or account for all aspects 
of the uncertainty construct. We tried to address this issue by 
discussing the hit rate results for two confidence levels in the 
context of further measures proposed in the literature for 
evaluating uncertainty estimates. 

External Validity: With respect to the validity of 
inferences regarding the generalizability of cause-effect 
relationships observed in the study, we identified two major 
threats. (1) There may be an interaction of the causal 
relationship with the outcomes, caused by the fact that the 
validation was performed on data from specific projects and 
the observed effect might not recur if validation were to be 
performed on other project data. We tried to reduce this risk 
by covering with our study models for different domains, 
focusing on different project characteristics and with 
differences in accuracy and complexity. (2) There may also 
be an interaction of the causal relationship with the setting. 
The observed effect might be caused by the particular 
realization of the bootstrapping. We applied the original non-
parametric algorithm; however, in the literature, many 
enhanced approaches can be found, e.g., iterative approaches 
with bias correction. Moreover, the observed effects may be 
caused by the particular estimator (median) that is used to 
compute the base value within the classic hybrid estimation 
methods. In practice, other strategies are possible (mean, 
regression, etc.). Finally, we validated the impact of 
bootstrapping on prediction outcomes in the context of two 
CMMC-based estimation methods, which means they follow 
a specific approach for implementation hybrid estimation. 
These results might not recur when validated in the context 
of other hybrid estimation approaches. 

VI. CONCLUSIONS AND FUTURE WORK 

Several studies have shown that estimation methods that 
combine measurement data and expert judgment are 
applicable in practice and provide accurate point estimates 
for project characteristics that are relevant for project 
decision makers such as effort and defects. 

However, as illustrated in this article, the ability of 
hybrid prediction methods to provide realistic uncertainty 
estimates may suffer due to the fact that they do not 
appropriately consider the uncertainty introduced by 
imperfect models. Based on two hybrid CMMC-based 
prediction methods and estimation models developed in six 
different environments, we could show that this issue is not a 
theoretical one but could be observed in real-world hybrid 
models built with the considered prediction methods. In 
particular, the prediction intervals provided by existing 
models based on a confidence level of 0.8 are too narrow 
with statistical significance. This means the models are 
overconfident in their uncertainty estimates. 

Therefore, we proposed as a possible solution the 
integration of bootstrapping in the considered prediction 
methods. The empirical results show that when extended by 
bootstrapping, the methods provide more realistic 
uncertainty estimates. The hit rate for prediction intervals 
with a confidence level of 0.8 could be improved with 
statistical significance from 0.64 for the classic approaches 
to 0.74 for the bootstrapped ones. At the same time, the 



This is the author’s version of an IEEE-copyrighted article. The definitive version was published in Proceedings of the 5th International 

Symposium on Empirical Software Engineering and Measurement (ESEM 2011), Banff, Canada (available at http://ieeexplore.ieee.org). 

median relative prediction interval width increased from 0.34 
to 0.41 but is still low when compared to prediction interval 
widths reported for purely data-based models. Further 
analyses indicate that the model’s point estimation accuracy 
and the number of modeled influencing factors may have a 
positive impact on the realism of the uncertainty estimates 
provided by the model. 

We consider the study results as a good starting point for 
further investigations on the impact of bootstrapping on the 
performance of hybrid estimation methods. In our opinion, 
the results raise two major research questions that should be 
addressed by further studies: Can the observed results be 
generalized to other hybrid estimation methods such as 
methods based on Bayesian Belief Networks? Are there any 
causalities underlying the observed correlation between 
specific properties of CMMC-based prediction models and 
the accuracy of their uncertainty estimates? 
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